

BGP Configuration

Michael Schapira, Princeton University Fall 2010 (TTh 1:30-2:50 in COS 302)

COS 561: Advanced Computer Networks http://www.cs.princeton.edu/courses/archive/fall10/cos561/

Local Control vs. Global Properties

The Internet is a "network of networks" -~35,000 separately administered networks -Competitive cooperation for e2e reachability Local Control **Global Properties** Intradomain routing, Performance, security, interdomain policies reliability, scalability

Two-Tiered Routing Architecture

- Goal: distributed management of resources

 Internetworking of multiple networks
 Networks under separate administrative control
- Intradomain: inside a region of control

 Routers configured to achieve a common goal
 Okay for routers to share topology information
 Different ASes can run different protocols
- Interdomain: between regions of control

 ASes have different (maybe conflicting) goals
 Routers only share reachability information

Internet Structure

Autonomous Systems (ASes)

- AS-level topology
 - -Nodes are Autonomous Systems (ASes)
 - -Destinations are prefixes (e.g., 12.0.0/8)
 - -Edges are links and business relationships

AS Numbers (ASNs)

ASNs are 16 bit values (or 32-bit). 64512 through 65535 are "private"

Currently around 35,000 in use.

- Level 3: 1
- MIT: 3
- Harvard: 11
- Yale: 29
- Princeton: 88
- AT&T: 7018, 6341, 5074, ...
- Verizon: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...

```
, . . .
```

Business Relationships Between ASes

- Neighboring ASes have business contracts

 How much traffic to carry
 Which destinations to reach
 How much money to pay
- Common business relationships
 - -Customer-provider
 - -Peer-peer
 - -Backup
 - -Sibling

Customer-Provider Relationship

- Customer needs to be reachable from everyone — Provider ensures all neighbors can reach the customer
- Customer does not want to provide transit service - Customer does not let its providers send traffic through it

Traffic to the customer

Traffic **from** the customer

Peer-Peer Relationship

- Peers exchange traffic between customers
 - -AS lets its peer reach (only) its customers
 - -AS can reach its peer's customers
 - -Often the relationship is settlement-free (i.e., no \$\$\$)

Traffic to/from the peer and its customers

AS Structure: Tier-1 Providers

Top of the Internet hierarchy

 Has no upstream provider of its own
 Typically has a large (inter)national backbone
 Around 10-12 ASes: AT&T, Sprint, Level 3, ...

AS Structure: Other ASes

- Lower-layer providers (tier-2, ...)
 - -Provide transit service to downstream customers
 - But need at least one provider of their own
 - -Typically have national or regional scope
 - E.g., Minnesota Regional Network
 - -Includes a few thousand ASes
- Stub ASes
 - -Do not provide transit service
 - -Connect to upstream provider(s)
 - -Most ASes (e.g., 85-90%)
 - -E.g., Princeton

Policy-Based Path-Vector Routing

Shortest-Path Routing is Restrictive

- All traffic must travel on shortest paths
- All nodes need common notion of link costs
- Incompatible with commercial relationships

Path-Vector Routing

- Extension of distance-vector routing

 Support flexible routing policies
 Faster convergence(avoid count-to-infinity)
- Key idea: advertise the entire path

 Distance vector: send distance metric per dest d
 Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - -Look for its own node identifier in the path
 - -E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops -E.g., node 1 simply discards the advertisement

Flexible Policies

- Each node can apply local policies
 - -Path selection: Which path to use?
 - -Path export: Whether to advertise the path?
- Examples
 - -Node 2 may prefer the path "2, 3, 1" over "2, 1"
 - -Node 1 may not let node 3 hear the path "1, 2"

Border Gateway Protocol

Border Gateway Protocol

- Prefix-based path-vector protocol
- Policy-based routing based on AS Paths
- Evolved during the past 20 years
 - 1989 : BGP-1 [RFC 1105], replacement for EGP
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771], support for CIDR
 - 2006 : BGP-4 [RFC 4271], update

"BGP at 18": http://www.youtube.com/watch?v=HAOVNYSnL7k 18

Incremental Protocol

- A node learns multiple paths to destination

 Stores all of the routes in a routing table
 Applies policy to select a single active route
 and may advertise the route to its neighbors
- Incremental updates
 - -Announcement
 - Upon selecting a new active route, add node id to path
 - ... and (optionally) advertise to each neighbor
 - -Withdrawal
 - If the active route is no longer available
 - ... send a withdrawal message to the neighbors

BGP Route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including -AS path (e.g., "7018 88") -Next-hop IP address (e.g., 12.127.0.121) 12.127.0.121 192.0.2.1 **AS 7018 AT&T AS 88 AS 11** Yale Princeton

128.112.0.0/16

AS path = 88

128.112.0.0/16 **AS path = 7018 88** 21 Next Hop = 192.0.2.1 Next Hop = 12.127.0.121

BGP Path Selection

- Simplest case

 Shortest AS path
 Arbitrary tie break
- Example
 - Three-hop AS path preferred over a five-hop AS path
 AS 12654 prefers path
 - through Global Crossing
- But, BGP is not limited to shortest-path routing –Policy-based routing

BGP Policy: Influencing Decisions Open ended programming. Constrained only by vendor configuration language Receive BGP Apply Policy = filter routes & Based on Attribute Best Routes Apply Policy = filter routes & Transmit BGP

BGP Policy: Applying Policy to Routes

- Import policy
 - -Filter unwanted routes from neighbor
 - E.g. prefix that your customer doesn't own
 - -Manipulate attributes to influence path selection
 - E.g., assign local preference to favored routes
- Export policy
 - -Filter routes you don't want to tell your neighbor
 - E.g., don't tell a peer a route learned from other peer
 - -Manipulate attributes to control what they see
 - E.g., make a path look artificially longer than it is

BGP Policy Examples

Import Policy: Local Preference

26

 Favor one path over another -Override the influence of AS path length -Apply local policies to prefer a path Example: prefer customer over peer)Local-pref = 90 Sprint AT&T Local-pref = 100 **Tier-2** Yale Tier-3

Import Policy: Filtering

- Discard some route announcements

 Detect configuration mistakes and attacks
- Examples on session to a customer

 Discard route if customer doesn't own the prefix
 Discard route containing other large ISPs

Export Policy: Filtering

• Discard some route announcements —Limit propagation of routing information

Examples

-Don't announce routes from one peer to another

Export Policy: Filtering

- Discard some route announcements —Limit propagation of routing information
- Examples
 - Don't announce routes for network-management hosts or the underlying routers themselves

Export Policy: Attribute Manipulation

- Modify attributes of the active route
 To influence the way other ASes behave
- Example: AS prepending

 Artificially inflate AS path length seen by others
 Convince some ASes to send traffic another way

BGP Policy Configuration

- Policy languages are vendor-specific

 Not part of the BGP protocol specification
 Different languages for Cisco, Juniper, etc.
- Still, all languages have some key features —Policy as a list of clauses
 - -Each clause matches on route attributes
 - -... and discards or modifies the matching routes
- Configuration done by human operators

 Implementing the policies of their AS
 Biz relationships, traffic engineering, security, ...31

BGP Inside an AS

An AS is Not a Single Node

Internal BGP and Local Preference

- Example
 - -Both routers prefer the path through AS 100 on the left
 - -... even though the right router learns an external path

Joining BGP and IGP Information

- Border Gateway Protocol (BGP)
 - -Announces reachability to external destinations
 - -Maps a destination prefix to an egress point
 - 128.112.0.0/16 reached via 192.0.2.1
- Interior Gateway Protocol (IGP)

 Used to compute paths within the AS
 Maps an egress point to an outgoing link
 - 192.0.2.1 reached via 10.1.1.1

An AS May Learn Many Routes

Multiple connections to neighboring ASes

 Multiple border routers may learn good routes
 with the same local-pref and AS path length

Hot-Potato (Early-Exit) Routing

- Hot-potato routing
 - -Each router selects the closest egress point
 - -... based on the path cost in intradomain protocol
- BGP decision process
 - Highest local preference
 - -Shortest AS path
 - Closest egress point
 - -Arbitrary tie break

